PMX40
RF Power Meter
The PMX40 provides design engineers and technicians the utility of traditional benchtop instrument, the flexibility and performance of modern USB RF power sensors, and the simplicity of a multi-touch display built with Boonton award-winning technology.

As a benchtop meter, the PMX40 provides a standalone solution for capturing, displaying, and analyzing peak and average RF power in both the time and statistical domains through an intuitive, multi-touch touchscreen display.

The PMX40 Power Meter utilizes up to four RTP and CPS families of USB RF power sensors with industry-leading performance and capabilities either independently or for synchronized multi-channel measurements of CW, modulated, and pulsed signals.

Providing the ultimate flexibility, the PMX40 sensors can be disconnected and independently used as standalone instruments.

Key Features
- Capture/display/analyze peak and average power
- Frequency range from 4 kHz to 40 GHz
- **Industry-leading** video bandwidth (195 MHz) and rise time (3 ns)
- **Industry-leading** 100,000 measurements per second
- **Industry-leading** 100 ps time resolution
- Synchronous multi-channel measurements (up to 4 channels)
- Sensors can be used as standalone instruments
Pulsed Mode
Analysis of fast-rising single pulses or pulses with short pulse repetition intervals (PRIs) requires an instrument with sophisticated trigger and data acquisition capability. Within Pulsed Mode, more than 16 pulse parameters can be measured.

Continuous Mode
For simple, intuitive measurements of repetitive waveforms, the PMX40 Continuous Mode of operation provides a numeric display of average, maximum and minimum signal powers.

Statistical Mode
In Statistical Mode, the PMX40 plots the Complementary Cumulative Distribution Function (CCDF). The CCDF plot shows the rate of occurrence of a specific crest factor for signals, such as those used in 5G, 4G/LTE, and Wi-Fi applications.

PMX40 Measurement Modes

Connect up to 4 USB sensors for multi-channel measurements.

Sync ports to source or receive triggers for timing and synchronization.

Test source to verify sensor operation.

Multi-touch display with intuitive user interface.

One touch to quickly access presets and favorite functions.
High-Performance and Versatile USB Power Sensors

The Boonton PMX40 Power Meter utilizes Boonton RTP and CPS families of USB RF power sensors with industry leading performance and capabilities. All RTP sensors incorporate the unique Boonton Real-Time Power Processing™ technology, which virtually eliminates gaps in measurement suffered by other power sensors and enables industry best measurement speeds. In terms of RF performance, the RTP5000 series Real-Time Peak Power Sensors are the fastest responding sensors with 3 ns rise times and 195 MHz of video bandwidth. The RTP4000 series Real-Time True Average Power Sensors enable the lowest frequency measurements for diode-based average power measuring sensors and can make accurate measurements virtually independent of signal modulation bandwidth. CPS sensors offer flexible connectivity and performance leadership at an excellent price point.

RTP5000 Series Real-Time Peak Power Sensors
- 50 MHz to 6 GHz, 18 GHz and 40 GHz peak RF power sensors
- Up to 195 MHz video bandwidth with 3 ns rise time
- Crest factor and statistical measurements (e.g., CCDF)
- 10 GS/s effective sample rate

RTP4000 Real-Time True Average Power Sensors
- 4 kHz to 6, 18 and 40 GHz average RF power sensors
- No modulation bandwidth limitations
- 1 GS/s effective sample rate

CPS2008 True Average Connected Power Sensors
- 50 MHz to 8 GHz
- 60 dB dynamic range
- USB and LAN (PoE) connectivity
- Most cost-effective average RF power sensor in its class

All RTP Real-Time Power Sensors
- Real-Time Power Processing™ technology with virtually zero measurement latency
- 100,000 measurements per second
- 80 dB dynamic range
- Synchronized multi-channel measurements
Software Features

Real-Time Power Processing™
Boonton Real-Time Power Processing™ dramatically reduces the total cycle time for acquiring and processing power measurement samples. By combining a dedicated acquisition engine, hardware trigger, integrated sample buffer, and a real-time optimized parallel processing architecture, Real-Time Power Processing™ performs most of the sweep processing steps simultaneously, beginning immediately after the trigger instead of waiting for the end of the acquisition cycle.

The advantages of the Real-Time Power Processing technique are that key processing steps take place in parallel and keep pace with the signal acquisition. With no added computational overhead to prolong the sweep cycle, the sample buffer cannot overflow. As a result, there is no need to halt acquisition for trace processing. This means gap-free signal acquisition virtually guarantees that intermittent signal phenomena such as transients or dropouts will be reliably captured and analyzed.

1 RTPP is available within the RTP500 and RTP4000 sensors.

Measurement Buffer Mode
The RTP series Measurement Buffer Mode is a remote control function that works in conjunction with Real-Time Power Processing to provide only the relevant burst or pulse information, eliminating the need to download and post-process large sample buffers. As a result, users can collect and analyze measurements from a virtually unlimited number of consecutive pulses or events without gaps. A wide variety of parameters can be calculated and plotted, such as duty cycle, pulse repetition rate, pulse width variation, and pulse jitter. In addition, anomalies, such as dropouts, can be identified.

Dropouts, such as those shown left, are the sorts of events often missed by conventional power meters due to the acquisition gaps while processing takes place.

Example seven pulse waveform.

<table>
<thead>
<tr>
<th>Entry Count</th>
<th>Interval Start</th>
<th>Interval Duration</th>
<th>Interval Average</th>
<th>Interval Minimum</th>
<th>Interval Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00 us</td>
<td>5.01 us</td>
<td>-0.043 dBm</td>
<td>-39.042 dBm</td>
<td>8.825 dBm</td>
</tr>
<tr>
<td>1</td>
<td>9.99 us</td>
<td>5.00 us</td>
<td>-0.006 dBm</td>
<td>-38.431 dBm</td>
<td>8.827 dBm</td>
</tr>
<tr>
<td>2</td>
<td>19.99 us</td>
<td>5.01 us</td>
<td>0.039 dBm</td>
<td>-41.549 dBm</td>
<td>9.742 dBm</td>
</tr>
<tr>
<td>3</td>
<td>30.00 us</td>
<td>5.00 us</td>
<td>0.017 dBm</td>
<td>-38.551 dBm</td>
<td>9.802 dBm</td>
</tr>
<tr>
<td>4</td>
<td>40.01 us</td>
<td>5.00 us</td>
<td>0.022 dBm</td>
<td>-40.699 dBm</td>
<td>9.477 dBm</td>
</tr>
<tr>
<td>5</td>
<td>49.99 us</td>
<td>5.00 us</td>
<td>-0.020 dBm</td>
<td>-39.706 dBm</td>
<td>8.102 dBm</td>
</tr>
<tr>
<td>6</td>
<td>50.00 us</td>
<td>5.00 us</td>
<td>0.036 dBm</td>
<td>-37.803 dBm</td>
<td>9.750 dBm</td>
</tr>
</tbody>
</table>

Measurement buffer data returned for waveform in above.
Wi-Fi and Wireless Communication Signal Analysis

Characterization and compliance testing of Wi-Fi and LTE chipsets and devices involves significant challenges for design and test engineers. With multiple-input, multiple-output (MIMO) architectures and channel bandwidths up to 160 MHz, testing is complex, especially when measuring RF power per channel and time alignment between channels. The PMX40 enables packet power measurements to be performed independently on multiple synchronous or asynchronous transmit chains with a common timebase shared among sensors.

Use markers to define a portion of the waveform on which to make measurements. **“Between Marker” measurements** are ideal for monitoring specific portions of a packet over long intervals.

Video bandwidth (VBW) describes the ability of a power sensor to track peak (envelope) power. Insufficient VBW will result in errant envelope and average power measurements. The PMX40 offers the **widest video bandwidth (195 MHz)** making it ideal for measuring 80 MHz, 100 MHz, and 160 MHz channels.

By comparing the peak-to-average power ratio, or crest factor (CF), of input and output signals of an RF transmission chain, engineers can assess circuit linearity. Additional insight can be provided with the PMX40 statistical mode **Complementary Cumulative Distribution Function** (CCDF) plot displaying the rate of occurrence of a specific CF. As an amplifier output compresses, the CF will reduce and the CCDF plot will move left.
PMX40 RF Power Meter
Addressing RF Communications and Radar Measurement Challenges

Secondary Surveillance Radar (SSR)

Design, verification, troubleshooting and maintenance of secondary surveillance radar (e.g. IFF-based radar) has never been more demanding.

Proper design and operation of SSR systems is critical to the safety and security of aviation. The PMX40 can be used to easily and accurately capture SSR waveforms. Markers enable measurements on specific portions of the waveform.

Industry-leading rise time (<3 ns) enables characterization of the most demanding radar signals.

Utilize the superior 100 ps time resolution to zoom and uncover signal characteristics that might otherwise be missed.

Users can take advantage of the PMX40 automated pulse measurement feature to measure and calculate 16 common power and timing parameters and display the parameters of interest: rise-time, fall time, pulse width, off-time, period, pulse repetition frequency, duty cycle, pulse peak, pulse overshoot, pulse average, waveform average, top level power, droop, bottom level power, edge delay, and pulse edge skew between channels.
Sensor Software

Power Analyzer - Advanced Measurement and Analysis Software
(for standalone operation of the RTP4000 and RTP5000 series of sensors)

Power Analyzer is a complimentary PC-Based software package for RTP5000 and RTP4000 sensor control, measurement configuration, and advanced analysis. It includes USB drivers, remote control API, firmware updater and virtual instrument application.

Key Features and Functionality

- Data displayed as numerical meter or waveform trace
- Statistical analysis with CCDF plot
- Multiple marker measurements, including between marker data and marker ratios
- Automated measurements; e.g., 16 automated pulse measurements
- Export measurement data in .csv or .pdf formats
- Up to 8 simultaneous power measurement channels
- Simulation mode available to preview functionality when a sensor is not available

Power Viewer – Simple and Intuitive Measurement Software
(for standalone operation of the CPS2000 Series of sensors)

Power Viewer is a complimentary PC-based software package for CPS2008 sensor control, measurement configuration, and analysis. It includes USB drivers, remote control API, firmware updater and virtual instrument application.

Key Features and Functionality

- Large numeric readout and/or analog meter display
- Zoom and pan through data logging strip chart
- Quickly set frequency, aperture (averaging) and offset values all from the main screen
- Calculates ratios between sensor measurements
- Control up to 8 sensors at once
- Simulation mode available to preview functionality when a sensor is not available
<table>
<thead>
<tr>
<th>Sensor Specifications</th>
<th>RTP5006</th>
<th>RTP5318</th>
<th>RTP5518</th>
<th>RTP5340</th>
<th>RTP5540</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency Range</td>
<td>50 MHz to 6 GHz</td>
<td>50 MHz to 18 GHz</td>
<td>50 MHz to 18 GHz</td>
<td>50 MHz to 40 GHz</td>
<td>50 MHz to 40 GHz</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-60 to +20 dBm</td>
<td>-34 to +20 dBm</td>
<td>-50 to +20 dBm</td>
<td>-34 to +20 dBm</td>
<td>-50 to +20 dBm</td>
</tr>
<tr>
<td>Pulse</td>
<td>-50 to +20 dBm</td>
<td>-24 to +20 dBm</td>
<td>-40 to +20 dBm</td>
<td>-24 to +20 dBm</td>
<td>-40 to +20 dBm</td>
</tr>
<tr>
<td>Internal Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>-38 to +20 dBm</td>
<td>-10 to +20 dBm</td>
<td>-27 to +20 dBm</td>
<td>-10 to +20 dBm</td>
<td>-27 to +20 dBm</td>
</tr>
<tr>
<td>Min Pulse Width (fast/std)</td>
<td>10 ns / 3 µs</td>
<td>10 ns / 3 µs</td>
<td>200 ns / 3 µs</td>
<td>10 ns / 3 µs</td>
<td>200 ns / 3 µs</td>
</tr>
<tr>
<td>Max Repetition Rate</td>
<td>50 MHz</td>
<td>50 MHz</td>
<td>5 MHz</td>
<td>50 MHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Rise time (fast/std)</td>
<td>3 ns / <10 µs</td>
<td>5 ns / <10 µs</td>
<td><100 ns / <10 µs</td>
<td>5 ns / <10 µs</td>
<td><100 ns / <10 µs</td>
</tr>
<tr>
<td>Video Bandwidth (high/ std)</td>
<td>195 MHz / 350 kHz</td>
<td>70 MHz / 350 kHz</td>
<td>6 MHz / 350 kHz</td>
<td>70 MHz / 350 kHz</td>
<td>6 MHz / 350 kHz</td>
</tr>
<tr>
<td>Single-shot Bandwidth</td>
<td>35 MHz</td>
<td>35 MHz</td>
<td>6 MHz</td>
<td>35 MHz</td>
<td>6 MHz</td>
</tr>
<tr>
<td>RF Input</td>
<td>Type N, 50 Ω</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.25 (0.05 - 6 GHz)</td>
<td>1.15 (0.05 - 2.0 GHz)</td>
<td>1.15 (0.5 - 2.0 GHz)</td>
<td>1.25 (0.05 - 4.0 GHz)</td>
<td>1.25 (0.05 - 4.0 GHz)</td>
</tr>
<tr>
<td></td>
<td>1.28 (2.0 - 16 GHz)</td>
<td>1.20 (2.0 - 6.0 GHz)</td>
<td>1.65 (4.0 - 38 GHz)</td>
<td>1.65 (4.0 - 38 GHz)</td>
<td>1.65 (4.0 - 38 GHz)</td>
</tr>
<tr>
<td></td>
<td>1.34 (16 - 18 GHz)</td>
<td>1.28 (6.0 - 16 GHz)</td>
<td>2.00 (38 - 40 GHz)</td>
<td>2.00 (38 - 40 GHz)</td>
<td>2.00 (38 - 40 GHz)</td>
</tr>
<tr>
<td></td>
<td>1.34 (16 - 18 GHz)</td>
</tr>
<tr>
<td>RTP4006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Frequency Range</td>
<td>10 MHz to 6 GHz</td>
<td>4 kHz to 6 GHz</td>
<td>10 MHz to 18 GHz</td>
<td>10 MHz to 40 GHz</td>
<td>50 MHz to 8 GHz</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-60 to +20 dBm</td>
<td>-60 to +20 dBm</td>
<td>-60 to +20 dBm</td>
<td>-40 to +20 dBm</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>-45 to +20 dBm</td>
<td>-45 to +20 dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Trigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>-40 to +20 dBm</td>
<td>-40 to +20 dBm</td>
<td>-40 to +20 dBm</td>
<td>-40 to +20 dBm</td>
<td></td>
</tr>
<tr>
<td>Min Pulse Width (fast/std)</td>
<td>4 µs</td>
<td>4 µs</td>
<td>4 µs</td>
<td>4 µs</td>
<td></td>
</tr>
<tr>
<td>Max Repetition Rate</td>
<td>120 kHz</td>
<td>120 kHz</td>
<td>120 kHz</td>
<td>120 kHz</td>
<td></td>
</tr>
<tr>
<td>RF Input</td>
<td>Type N, 50 Ω</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.15 (0.01 - 2 GHz)</td>
<td>1.15 (0.01 - 2.0 GHz)</td>
<td>TBD (0.5 to 2.0 GHz)</td>
<td>TBD (0.5 to 4.0 GHz)</td>
<td>1.3 (0.05 - 8 GHz)</td>
</tr>
<tr>
<td></td>
<td>1.20 (2.0 - 6 GHz)</td>
<td>1.20 (2.0 - 6 GHz)</td>
<td>TBD (2.0 to 2.0 GHz)</td>
<td>TBD (4 to 38 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD (6 to 16 GHz)</td>
<td>TBD (6 to 16 GHz)</td>
<td>TBD (2.0 to 6.0 GHz)</td>
<td>TBD (38 to 40 GHz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TBD (16 to 18 GHz)</td>
<td>TBD (16 to 18 GHz)</td>
<td>TBD (6 to 16 GHz)</td>
<td>TBD (38 to 40 GHz)</td>
<td></td>
</tr>
</tbody>
</table>

RTP5000 Real-Time Peak USB Power Sensors

RTP4000 Real-Time True Average USB Power Sensors

CPS2000 True Average Connected USB/LAN Power Sensors
Specifications

<table>
<thead>
<tr>
<th>Channels</th>
<th>Up to 4</th>
</tr>
</thead>
</table>
| Sensors | RTP5000 Series
RTP4000 Series
CPS2000 Series |
| Display | 5-inch WVGA multi-touch display with intuitive graphical user interface |
| Display Modes | Trace (power vs time)
Statistical measurements
Meter (numeric display)
CCDF |
| Automatic measurements | (pulse, statistical, and markers measurements) |
| Marker Measurements | Markers (vertical cursors)
Marker Independently
Interval Between Markers
Pair of Markers
Settable in time relative to the trigger position
Avg, Min and Max Power at a specified time offset
Avg, Min and Max Power over the defined interval
Ratio of power values at each marker |
| Pulse Mode – | Pulse rise-time
Pulse width
Pulse period
Pulse duty cycle
Pulse peak
Pulse overshoot
Top level power
Edge delay
Pulse fall-time
Pulse off-time
Pulse repetition frequency
Waveform average
Pulse average
Pulse droop
Bottom level power
Pulse edge skew between channels |
| Automatic Measurements | Pulse rise-time
Pulse width
Pulse period
Pulse duty cycle
Pulse peak
Pulse overshoot
Top level power
Edge delay
Pulse fall-time
Pulse off-time
Pulse repetition frequency
Waveform average
Pulse average
Pulse droop
Bottom level power
Pulse edge skew between channels |
| Statistical Mode – | Peak power
Minimum power
Dynamic range
Crest factor at cursor
Peak to average ratio
Percent at cursor
Crest factor at various percents |
| Automatic Measurements | Peak power
Minimum power
Dynamic range
Crest factor at cursor
Peak to average ratio
Percent at cursor
Crest factor at various percents |
| Trigger | Synchronization*
Mode | Among RTP Series (internal trig distribution)
Normal, Auto, Auto Pk-to-Pk, Free Run |
| Source | Any connected RTP Series sensor (via SMB’s) or rear panel external trigger |
| Internal Level Range | -40 dBm to +20 dBm (sensor dependent) |
| External Level Range | ±5 volts or TTL
+ or - |
| Slope | Sensor and timebase dependent |
| Hold-off, Min Pulse Width, Max Trigger Rate | Sensing and timebase dependent |
| Time Base | Time Base Resolution, Range, Accuracy
Time Base Display
Trigger Delay Range
Trigger Delay Resolution |
| Sensor dependent | Sweeping or Roll Mode
Sensor dependent
0.02 divisions |
Specifications, Continued

Inputs/Outputs (front panel)
- USB with SMB trigger port
- 4 ports USB2.0: Type A receptacle
- 4 ports SMB(f)

Test Source (optional rear panel placement)
- 50 MHz
- 1.00 mW (0 dBm) +/- 2.3% (0.1 dB) typ

Inputs/Outputs (rear panel)
- LAN
- USB with SMB trigger port
- 10/100 Ethernet: RJ-45 modular socket
- 4 ports USB2.0: Type A receptacle
- 4 ports SMB(f)

Multi I/O Connector
- User Selectable
- Range:
 - Status, trigger, or voltage output
 - 0 to 10 V (Analog unipolar)
 - -10 V to +10 V (Analog bipolar)
 - 0 or 5 V (Logic)
- Accuracy: ±200 mV (±100 mV typical)
- Linearity: 0.4% typical

Remote Control
- Command Set
- LAN
- Ethernet: 10/100/1000 BaseT; HiSLIP
- SCPI-1999.0

Regulatory Compliance
- CE compliance with the following European Union directives
 - Low Voltage Directive 2014/35/EU
 - Electromagnetic Compatibility Directive (EMC) 2014/30/EU
 - Environmental MIL-PRF-28800F, Class 3

Dimensions (excluding connectors)
- H x W x D: 3.5x8.3x11.2 (in), 89x211x284 (mm)

Weight
- 4.8 lbs, 2.2 kg

Power Requirements
- 90 to 260 VAC, 47 to 60 Hz; 90 to 135 VAC, 47 to 400 Hz; 30 W (35 VA) max

Operating Temperature
- 0 to 50 °C (32 to 122 °F)

Storage Temperature
- -40 to +70 °C (-40 to 158 °F)

Humidity
- 95% maximum, non-condensing

Altitude
- Operation up to 15,000 feet (4600 m)

Shock
- Withstands ±30 G, 11 ms impulse in X, Y, and Z axes

Vibration
- Withstands 2 G sine, 5 to 55 Hz; 2 G random, 5 to 500 Hz

Warranty
- 3 years

1. Optional GPIB connectivity
2. External trigger input
3. Auxiliary sensor and Sync inputs
4. HDMI output for remote front panel display
5. LAN connectivity
6. Optional Test Source rear panel output
Ordering Information

<table>
<thead>
<tr>
<th>PMX40</th>
<th>RF Power Meter (includes 2 active channels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>PMX40-4CH</td>
<td>Adds 2 Active Channels (for a total of 4)</td>
</tr>
<tr>
<td>PMX40-GPIB</td>
<td>GPIB Control (internally installed)</td>
</tr>
<tr>
<td>PMX40-RTS</td>
<td>Moves Test Source output to the rear panel</td>
</tr>
</tbody>
</table>

Included Accessories
- Information Card (provides information on where to download the latest manual, software, utilities)

Optional Accessories
- PMX40-RMK: Full-width 19” Rack Mount Kit (includes handles & hardware for mounting one or two meters)
- PMX40-TCASE: Transit case, hold the PMX40 and up to 4 sensors

RF Power Sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Description</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS2008</td>
<td>True Average Connected Power Sensor</td>
<td>50 MHz to 8 GHz</td>
</tr>
<tr>
<td>RTP4006</td>
<td>Real-Time True Average Power Sensor</td>
<td>10 MHz to 6 GHz</td>
</tr>
<tr>
<td>RTP4106</td>
<td>Real-Time True Average Power Sensor</td>
<td>4 kHz to 6 GHz</td>
</tr>
<tr>
<td>RTP4018*</td>
<td>Real-Time True Average Power Sensor</td>
<td>10 MHz to 18 GHz</td>
</tr>
<tr>
<td>RTP4040*</td>
<td>Real-Time True Average Power Sensor</td>
<td>10 MHz to 40 GHz</td>
</tr>
<tr>
<td>RTP5006</td>
<td>Real-Time Peak Power Sensor</td>
<td>50 MHz to 6 GHz</td>
</tr>
<tr>
<td>RTP5318</td>
<td>Real-Time Peak Power Sensor</td>
<td>50 MHz to 18 GHz</td>
</tr>
<tr>
<td>RTP5518</td>
<td>Real-Time Peak Power Sensor</td>
<td>50 MHz to 18 GHz</td>
</tr>
<tr>
<td>RTP5340</td>
<td>Real-Time Peak Power Sensor</td>
<td>50 MHz to 40 GHz</td>
</tr>
<tr>
<td>RTP5540</td>
<td>Real-Time Peak Power Sensor</td>
<td>50 MHz to 40 GHz</td>
</tr>
</tbody>
</table>

Included Accessories
- Information Card (provides information on where to download the latest manual, software, utilities)
- 0.9 m BNC (m) to SMB (m) cable (RTP sensors)
- 0.9 m SMB (m) to SMB (m) cable (RTP sensors)
- 1.8 m USB A (m) to USB B (m) locking SealATCH cable (RTP sensors)
- 1.6 m USB A (m) to USB B (m) cable (CPS sensors)

*RTP4018 and RTP4040 are currently in development.
Specifications and performance subject to change